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Simulations performed using a recently introduced deterministic topological model do not agree with some
very recent results concerning the evolution of a single perturbed cluster. We analyze the source of the
discrepancy and introduce a topological model that is in very good agreement with experiments and simula-
tions available up to now.@S1063-651X~96!08309-2#
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I. INTRODUCTION

During the last decade there has been a surge of interest in
the properties of two dimensional~2D! cellular structures
@1#. This name refers to a wide variety of different physical
systems, whose geometrical structure consists of a tiling of
the plane by polygonal domains. One example of a cellular
structure, which has attracted considerable attention of
physicists recently, is soap froth confined between two par-
allel glass plates@2–6#, such that thin soap films form a
branched structure and the bubbles have the form of poly-
gons. The cellular structure formed by the 2D soap froth
evolves slowly with time. Since the soap froth is created in a
nonequilibrium way, the gas pressure varies from bubble to
bubble. The walls are penetrable for the gas; the pressure
difference provides a slow diffusive flux between neighbor
bubbles. This is the driving mechanism for the evolution of
the soap froth.

Geometrical constraints have a considerable effect on the
froth’s evolution. The froth is made of thin soap films which
are the bubbles’ walls, that meet at vertices. The resulting 2D
graph or film network has the following properties: First,
only threeedges can meet at a vertex; the fixed coordination
number implies a strong geometrical constraint, originating
from Euler’s theorem, that relatesNb , the number of the
bubbles in the system, to the number of the edges:
Ne56Nb . Hence the mean number of sides of a bubble is
6. Second, all the contact angles at a vertex are 120°. Diffu-
sion of the gas between neighboring bubbles restricted by
these two geometrical properties of the network leads to the
exactvon Neumann law of the dynamics of 2D soap froths
@7#, that relates the rate of area change of any bubble to the
number of its sides~or ‘‘topological class’’!, n:

dan
dt

5k~n26!. ~1!

As one can see immediately from this equation, bubbles with
n.6 grow, while those withn,6 shrink and finally disap-
pear. Since no new bubbles can be created and some disap-
pear as a result of evolution, the total number of bubbles in
the sample decreases. Since the total area of the bubbles
~which is equal to the area of the sample! remains the same
all the time, the mean area of a bubble,ā, grows in the
course of the evolution.

After a transient period, this coarsening process leads to a
scaling state. In this regime the mean area of the bubble
grows linearly with time ā(t);t @and consequently, the
number of bubblesN(t);t21#. By scaling one means that
two photographs of the system taken at different times differ
only by an overall scale of all areas. When rescaled in units
of ā, these two photographs become statistically identical;
that is,no statistical measurement can distinguish between
the earlier and the later pictures. In particular, the distribu-
tion of the areas and the topological classes,Fn(a,t), is
known to have the following scaling form:

Fn~a,t !5
1

ā
f n~a/ā!. ~2!

While theoretical and experimental research concentrated
mainly on investigation of different properties of the scaling
state, some work was devoted also to the transient behavior
starting from initial states of the froth that in some sense
were far from the scaling state. One of the simplest tech-
niques to study soap froth dynamics in the scaling state as
well as during the transient period approaching it is that of
topological simulations. In Sec. II we describe various topo-
logical models, their successes and failures. The simplest to-
pological model~model A! fails to provide agreement with
three experiments~real and computer generated!. The first is
thesurvivors’ problem@8#; the second concerns the approach
to the scaling regime from a partially ordered initial state@9#.
These two problems were remedied by introduction of model
B @9#; however, recent computer experiments, which ad-
dressed the evolution of an ordered initial state with asingle
defect@10# disagreed with the predictions of this model. In
Sec. III we identify the source of this discrepancy and
present model C, a slightly modified version of B, which
does agree with the single-defect experiments.

II. TOPOLOGICAL MODELS:
SUCCESSES AND FAILURES

Let us turn now to modeling of the soap froth’s evolution.
Had the bubbles never changed their topological classes, Eq.
~1! would have implied that after a short time only cells with
n.5 remain in the froth, contradicting the geometrical con-
straint Ne56Nb . However, when a bubble disappears, its
neighbors undergotopological rearrangements~so called T2
processes! and change their topological classes. This way the
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mean coordination number remains fixed. Since the von
Neumann law describes the dynamics of the soap froth in
terms of the areas and topological classes of the bubbles
~topological approach!, one could try to model the system
using only these variables. A significant obstacle to such
modeling is the fact that the outcome of the topological re-
arrangements is not unique: while a triangle disappears in a
unique way, there are two possible ways for a rectangle and
five for a pentagon. Which of these ‘‘channels’’ will be re-
alized in each particular case depends on the geometrical
configuration of the froth just before the bubble vanishes.
Thus, in order to get an exact description, one should take
into account the configuration of the froth explicitly.

On the other hand, models@11–16# that followall details
of the froth ~simulate the motion of the walls! are numeri-
cally difficult to implement, especially for systems with a
high number of bubbles. If one wishes to arrive at the scaling
state with a large enough number of bubbles to make mean-
ingful statistical measurements, some sort of reduced repre-
sentation of the dynamics is helpful. Topological models,
that keep only the areas of the bubbles and the topology of
the network, do provide a reasonably simple representation.
All such models must contain, however, a guess of how to
choose the proper rearrangement T2 channel when a bubble
disappears.

The simplest choice that can be made is selecting one of
the channels at random@17,18#. Once this assumption has
been made, one can describe the soap froth in terms of the
areas of the bubbles and the topological connectivity of the
bubble array, which is uniquely defined by the so-calledad-
jacency matrixthat identifies the neighbors of each bubble.
One solves explicitly von Neumann’s equations on a geo-
metrically realisticnetwork of bubbles@8,10,17,18# until
the first one disappears~reachesai50). At this point a T2
channel is selected at random, the neighbor cells change their
topological classes, and the adjacency matrix also changes
~we call the resulting model A!.

Using model A one can solve very efficiently the dynam-
ics of a very large number of bubbles. In spite of its relative
simplicity ~in comparison with the more elaborate calcula-
tions, such as for example, Refs.@11–15# that we do not
describe here!, the results can still be characterized as quali-
tatively correct. For some time this model was the best in the
class of simple models of the soap froth and there was no
indication that it is possible to improve it significantly with-
out losing its simplicity.

Recently, however,three cases were found for which
model A obviously disagreed with experiments. This has en-
couraged attempts to modify the model@9#. Let us briefly
describe these three problems.

~i! The survivors’ problem@8#; consider photos of the
evolving froth, taken in the scaling state, at two subsequent
timest i andt f , with t i,t f . Let the number of cells in these
two pictures be N(t i) and N(t f), respectively
@N(t i).N(t f)#. Using the information about all the interme-
diate states of the froth, we can identify on the earlier picture
~taken att i) each of theN(t f) cells that are present also in
the latter picture. These cells differ from the remaining
N(t i)2N(t f) cells of the earlier picture in that allN(t f)
survived till the momentt f , while the others have disap-
peared beforet f . We call theseN(t f) cells ‘‘survivors’’

while the name ‘‘bubbles’’ will be reserved for the others.
Obviously, the survivors’ statistics differs from that of the

entire ensemble of bubbles and it provides a dynamical char-
acteristic of the scaling state, dealing with temporal correla-
tions. Dependence ofyn , the topological class distribution of
the survivors on time (t5t f /t i), was investigated experimen-
tally, by topological simulations and mean field calculations
@8#; the main result was that the survivors’ topological dis-
tribution approaches a fixed form in the long time limit. At
the same time, as shown in Ref.@8#, there is a strong
quantitative disagreement between the experiment, mean
field treatment, and topological simulations.~Note that the
topological model used for simulations in Ref.@8# was dif-
ferent from model A considered here; however, later we re-
peated the same simulation using model A and found that
there is almost no difference between the results of the two
models.!

~ii ! The second failure of model A is the behavior of the
froth in the transient regime, when the initial state of the
bubbles is a nearly ordered array of hexagons. The degree of
disorder can be characterized bym2, the value of the second
moment of the topological distribution of the froth. For an
ordered statem2 is small ~proportional to the density of the
defects in the hexagonal structure of the bubbles array!. At
the scaling state it approaches some valuem2→m2

sc. As long
as the froth becomes more and more disordered in the course
of the evolution, one would expectm2 to become larger and
larger until it achieves its final valuem2

sc. A remarkable fea-
ture of the transient period, contrary to the simple expecta-
tions, is a pronounced peakin the time dependence of
m2(t). This has been observed in experiments by Stavans
and Glazier@4#, as well as in the numerical simulations of
Weaire and Lei@19#. However, model A shows perfectly
monotonic growth ofm2(t) @9#.

~iii ! The third problem concerns growth of a single cluster
@10#. The elementary ‘‘unit’’ of the transient behavior dis-
cussed above is the evolution of a single defect, such as one
created by a single T1 switch on the ideal hexagonal net-
work. Were it not for the defect, the ideal hexagonal network
would have been stationary~as a consequence of the von
Neumann law!. So, our network consists of two parts: the
evolving neighborhood of the defect~called cluster! and all
the rest~the ideal hexagonal part!, which does not evolve.
Simulations of the single cluster growth by model A show
that the topological distribution of the bubbles in the cluster
approaches a steady form; its width is characterized by its
second moment,m250.72 ~compare this withm2

sc51.2 ob-
tained by this model in the disordered scaling state!.

When the single cluster dynamics was first addressed by
the topological model A@10# there were no available experi-
mental data on this problem. Very recently two independent
numerical experiments were made. First is the simulation by
Jiang, Mombach, and Glazier@20# of the Potts spin model
@14#. Their initial configuration was an ideal network of hex-
agonal bubbles with a defect~a large 12-sided bubble sur-
rounded by pentagons and hexagons! placed at the center.
The results obtained in this work were in contradiction with
the prediction of the topological model A@10#. They found
that the well-developed cluster consists of one huge central
bubble surrounded by a layer of small ones~mostly penta-
gons and hexagons!. Such a structure of the cluster provides
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in a trivial way an unbounded growth of the second moment,
whereas model A predicts a fixed form of the topological
distribution for the cluster and a finite value form2.

We investigated whether this discrepancy is caused by the
difference in the initial form of the defect, but found that
even for the defect used in@20# the topological models give
the same finitem2. Moreover, the result of the Potts simula-
tions @20# was confirmed by Ruskin and Feng@21#. They
simulated the model of Weaire and Kermode@11# with an
initial defect of exactly the form used in@9,10#. These simu-
lations also demonstrated unbounded growth ofm2.

Thus model A fails to explain the results of these three
problems. In order to determine the source of the failure of
the topological approach, one has to reexamine the approxi-
mations involved in model A. Since it uses the exact von
Neumann equations on a topologically correct network of
cells, it describes this phase of the evolution exactly. Hence
the only possible source of the failure is in therandomway
the T2 process is performed. A natural step is, therefore, to
try to suggest more realistic rules for selecting the T2 pro-
cess, that take into account the details of the bubbles’ con-
figuration. One wishes, however, to keep the model as
simple as possible. Such a modification, introduced in Ref.
@9#, was based on the following rule:in a T2 process the
shortest side undergoes first a T1 switch, turning a disap-
pearing pentagon into a rectangle, which again executes a T1
switch of its shortest edge and turns into a triangle, which
disappears in a single step by shrinking to a point.~A some-
what similar idea was proposed by Marder@22# in the frame
of the mean field ‘‘kinetic equation.’’!

In order to implement this idea in atopologicalmodel one
should express the information about the lengths of the edges
Li , j , separating two neighboring cellsi and j in terms of the
areas of the bubbles and the adjacency matrix. Dimensional
estimation of the perimeter and area of atypical n-sided
bubble leads to the following relation@9#:

Li , j5
AaiAaj
ninj

. ~3!

This relation, together with the rule stated above, defines a
topological model~model B! that takes into account the ef-
fects of the areas and topological classes of the neighboring
bubbles on the result of a T2 process. Actually,~3! is merely
a crude dimensional estimate. Nevertheless, as shown in@9#,
model B improves considerably the results for problems~i!
and ~ii ! mentioned above, as compared with model A.

In the present work we have extended our previous simu-
lations of the survivors’ problem@9# by model B; we gener-
ated a system of 100 000 bubbles and performed about
45 000 preliminary T1 switches in order to get a distribution
of the topological classes close to what we expect from the
T2 dynamics. Then we let the system evolve according to the
von Neumann law, performing the T2 processes according to
~3!. The scaling state was achieved with good accuracy when
there were about 64 000 bubbles. At this point we numbered
all the bubbles and started to follow the survivors. We found
that the convergence to a fixed distribution is slower than it
was in the framework of model A~for which a fixed topo-
logical class distribution of the survivors seemed to be ob-
tained when the number of bubbles decreased from 15 000 to

436@8#!. In order to achieve the same level of stationarity for
model B we had to follow the survivors from 64 000 until
300–400 bubbles were left in the system, i.e., nearly four
times longer.

Our simulations are compared in Fig. 1 with the results of
a previously reported experiment@8#. Evidently, the experi-
mental datado notcorrespond to our calculated fixed shape
of the distribution. Rather, we have very good agreement
between the experimental points and one of our
intermediatecurves, corresponding to 2640 bubbles in the
system, i.e., to reduction of the number of bubbles by a fac-
tor of about 24. This reduction is nearly the same as in the
experiment, which started with;3000 and stopped at
;120 bubbles. The definite distinction between the experi-
mental distribution and the fixed limiting topological class
distribution of our simulations may mean that the fixed form
has not yet been achieved in the experiment.

In order to see clearly the dynamical behavior of the sur-
vivors’ topological class distribution we present in Table I
the relative fractions ofn-sided survivors as a function of
time ~between the initial and the final pictures!. Triangles
were present in the scaling state but they were not observed
among survivors even after a very short time and they do not
appear in the table. Squares and pentagons disappear rather
fast. The concentration of the hexagons~which are the major
fraction in the scaling state! falls very quickly but it stabi-
lizes when the number of bubbles is about 300~reduction by
factor 20!. Analogously one can follow the evolution of each
fraction in this table and be convinced that the significant
yl ~i.e., 7< l<11) stabilize when the number of bubbles is
300–400 ~although y13 still grows even whenN5125),
while for N52400 the distribution is still changing.

We turn now to the second problem mentioned above, the
transient period of the froth evolution, starting from an initial
configuration with small disorder. Using model B we did

FIG. 1. The topological distribution of survivors obtained by
simulations using model B. The initial configuration contained
64 000 bubbles. Two curves~marked by3 and1, respectively!
correspond to the moments when there were 2640 and 125 bubbles
in the system. Circles represent the experimental points and stars
denote the topological distribution in the~initial! scaling state. No-
tice that the experimental points are close to those obtained when
there are 2640 bubbles in the system.
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obtain a peak of the second moment@9#. Moreover, the value
of the second moment in the scaling regime, obtained from
simulations of model B,m2

B51.4, was also in better agree-
ment with the experimentally foundm251.460.1 than the
result of model A,m2

A51.2.
In order to explain the slightly higher value ofm2

B , we
present in Table II the values for the ‘‘control parameter’’
r5Aa/n for bubbles withn.5 as obtained from averaging
in the scaling state. First of all, we see thatr does not vary
too much and hence the random choice of equally probable
T2 processes used by model A is quite justified~in the scal-
ing regime! and does not cause as large a discrepancy as in
the case of a single cluster. However,r does grow withn and
it is especially small for pentagons and rectangles. Therefore
as n increases, bubbles become less and less likely to lose
sides and their lifetime increases. This leads to the following
consequences.

~a! The fraction of many-sided bubbles is slightly greater
in model B than in A, where the T2 processes were per-
formed at random. This leads to the increase of the second
moment fromm2

A51.2 tom2
B51.4.

~b! The fixed distribution of the survivors is shifted to
largern, because now the many-sided bubbles have a higher
chance to survive than within model A. The difference be-
tween these two models is more pronounced for the survi-

vors’ problem than for the scaling state because the overall
topological distribution is constrained by the requirement
n̄56, that is absent for the survivors’ distribution.
In spite of the success of model B in reproducing the

existence of the peak ofm2 in the transient period as well as
the properties of the survivors’ dynamics as discussed above,
it fails to reproduce the infinite growth ofm2 in the single
cluster problem. Simulations show that both models A and B
give the same qualitative picture for a single cluster@9# ~the
distribution obtained by model B is slightly broader than that
obtained by model A!. Thus this crude discrepancy between
the results of detailed numerical experiments and topological
simulations shows that model B still leaves out some impor-
tant feature of the T2 processes.

III. SIMULATING THE SINGLE CLUSTER EVOLUTION:
MODEL C

What may still be missing in model B? The answer is
probably contained in the papers by Fradkov and co-workers
@23#, who showed that the conditions of mechanical equilib-
rium in the soap froth are such that any four-sided bubble
must be a perfect rectangle~i.e., with equal opposite sides!
when it becomes much smaller than all its neighbors.

TABLE I. Topological class distribution of survivors as a function of the number of bubbles in the system. The survivors are identified
in the scaling state when the system contained 64 533 bubbles~i.e., the first line in this table represents the usual scaling distribution for all
bubbles!. Each new line corresponds to reduction of the number of bubbles by a factor of 1.5 compared to the previous line. All data were
obtained by averaging over six runs to reduce fluctuations. The results of the experiment of Ref.@8# are also included~marked by ‘‘Expt.’’!
for comparison.

N 10y4 10y5 y6 y7 y8 y9 y10 y11 10y12 10y13

64533 0.69 2.92 0.343 0.185 0.083 0.022 0.004 0.00073 0.0010 0.0000
42286 0.42 2.71 0.359 0.202 0.091 0.027 0.0062 0.00090 0.0011 0.0001
28012 0.00 0.754 0.430 0.304 0.137 0.041 0.0094 0.0014 0.0017 0.0002
18515 0.00 0.061 0.279 0.429 0.207 0.062 0.0140 0.0021 0.0025 0.0002
12295 0.00 0.004 0.119 0.470 0.293 0.092 0.021 0.0031 0.0038 0.0004
8168 0.00 0.001 0.049 0.418 0.364 0.131 0.032 0.0047 0.0057 0.0006
5432 0.00 0.000 0.024 0.347 0.403 0.171 0.045 0.0069 0.0086 0.0009
3609 0.00 0.000 0.016 0.287 0.419 0.206 0.060 0.0099 0.012 0.0014
Expt. 0.00 0.000 0.0156 10 0.256 4 0.396 5 0.246 4 0.076 2 0.0256 1 0.0106 5 0.0000
2396 0.00 0.000 0.013 0.240 0.424 0.233 0.075 0.013 0.015 0.0021
1592 0.00 0.001 0.008 0.213 0.421 0.250 0.088 0.016 0.019 0.0031
1055 0.00 0.000 0.007 0.191 0.417 0.265 0.097 0.019 0.024 0.0047
699 0.00 0.000 0.006 0.170 0.414 0.279 0.104 0.023 0.028 0.0071
462 0.00 0.000 0.005 0.149 0.421 0.279 0.115 0.026 0.036 0.0108
302 0.00 0.000 0.004 0.142 0.410 0.283 0.121 0.032 0.054 0.0166
195 0.00 0.000 0.004 0.133 0.421 0.284 0.117 0.031 0.076 0.0257
125 0.00 0.000 0.003 0.137 0.400 0.296 0.125 0.028 0.080 0.0269

TABLE II. The mean areas of bubbles from various topological classes and the control ratio as a function
of n, as calculated for model B. We used a short simulation, starting with 10 000 bubbles; the measurements
were executed when the number of bubbles was between 2000 and 700.

n 4 5 6 7 8 9 10 11

ān 0.187 0.410 1.033 1.572 2.011 2.244 2.895 2.691
Aān/n 0.108 0.128 0.169 0.179 0.177 0.166 0.170 0.152
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Clearly, calculating the lengths of the sides of a four-sided
bubble by Eq.~3! we will never obtain a perfect rectangle.

This condition on disappearing rectangles is expected to
be important only in situations such as the one illustrated in
Fig. 2, where using Eq.~3! one identifies the maximal~‘‘1’’ !
and minimal~‘‘3’’ ! sides to be opposite while the maximal
side is much longer than all the others. Then switching the
minimal side, performed according to the rules of model B,
ultimately leads to the smallest and the largest neighbors
losing sides. It is intuitively clear that the bubble drawn in
Fig. 2 is far from mechanical equilibrium. The result of the
rearrangement would have changed if we had allowed the
bubble to attain mechanical equilibrium before disappearing
and take the form of a perfect rectangle with equal opposite
sides~‘‘1’’ and ‘‘3’’ !. It is easy to modify the rules of model
B so that disappearing four-sided bubbles behave as perfect
rectangles. Using the same idea which led us to~3!, we can
do this in the following way.

Identify the two pairs of opposite sides~‘‘1’’, ‘‘3’’ and
‘‘2’’, ‘‘4’’ ! and compare (Aa1/n1)(Aa3/n3) with
(Aa2/n2)(Aa4/n4). The pair for which this product is
smaller is identified as that of smaller length, and each of
these opposite sides will shrink to a point. Let us stress once
again that this way of choosing the shortest side can play an
important role~vs model B! only if the maximal side ‘‘1’’ is
much larger than all the others.

Let us now consider the T2 process for a pentagon. Ac-

cording to Ref.@23#, there is no constraint on the form of
pentagons~unlike the four-sided bubbles!. Therefore there is
no reason to change in any way the rules for the first T1
process for pentagons. However, after losing a side a penta-
gon becomes four-sided. Although it is extremely small, it is
subject to the same conditions of mechanical equilibrium as
a usual four-sided bubble. Therefore the second T1 switch
should be performed according to the general rule for such
bubbles introduced above. Let us summarize the rules of our
modified model~model C!.

Pentagons: Perform one T1 switch of the minimal side
@the lengths are calculated using~3!#; this step is exactly the
same as in model B. The remaining four-sided bubble is then
treated as a rectangle according to the rule below.

Rectangles: Find the two pairs of opposite sides, say,
‘‘1’’-‘‘3’’ and ‘‘2’’-‘‘4’’. For both pairs calculate the quan-
tities r i , j5(Aai /ni)(Aaj /nj ). If r 1,3.r 2,4, the neighbors
‘‘2’’ and ‘‘4’’ will be those who lose a side, while the num-
ber of sides of ‘‘1’’ and ‘‘3’’ remains the same and, con-
versely, if r 1,3,r 2,4, then ‘‘1’’ and ‘‘3’’ will lose a side.

When this model C is used in our simulations, a single
defect evolves into a cluster whose general form is very simi-
lar to that obtained in Refs.@20,21#. We observed mostly one
large many-sided bubble in the center, surrounded mostly by
pentagons, hexagons, and heptagons. Our simulations started
with a defect prepared by a single T1 switch of the ideal
lattice of hexagons and were stopped when one of the
bubbles acquired more than 30 sides. We found that for dif-
ferent runs@24# starting with the same initial defect the final
cluster sometimes contained only one large 30-sided bubble
at its center~while all other bubbles have fewer than 20
sides!, but we also had runs with three or four large bubbles
~more than 22 sides!. The total area of these large bubbles
was about 3 times larger than the total area of all small
surrounding bubbles in the cluster. The topological distribu-
tion of the small bubbles of the cluster was, however, quite
similar in all these runs. This distribution was found to be
somewhat different from the one calculated for the cluster
presented in Ref.@21#. However, this is so because our data
were obtained from larger clusters~of about 300 bubbles!,
while the cluster of Ref.@21# contains only 72 bubbles.
When we calculated the topological class distribution for
clusters of about 70 bubbles, rather good agreement with
Ref. @21# was obtained, as shown in Table III.

Simulating the transient behavior for initial states with
many isolated defects we found thatm2(t) has a peak~see
Fig. 3!, whose magnitude depends strongly on the initial con-
centration of the defects: the smaller the concentration, the

TABLE III. Topological distribution of the cluster that evolves from a single defect. The first line presents
data calculated for the cluster of Ref.@21#. That cluster contained 72 bubbles and was obtained from the same
initial defect as used in our simulations. The second and the third lines correspond to our simulation using
model C: obtained from ‘‘small’’~70 bubbles! and ‘‘large’’ ~about 400 bubbles! clusters, respectively. There
is a reasonable agreement between the ‘‘experiment’’@21# and our simulation, especially for statistically
significant data (x5 andx6) taken from the small cluster.

n 5 6 7 8

xn ~Ref. @21#! 0.167 0.628 0.057 0.029
xn(small) 0.211 0.618 0.177 0.001
xn(large) 0.277 0.532 0.100 0.026

FIG. 2. Example of a bubble thatdoes notsatisfy the condition
of mechanical equilibrium that requires opposite sides of a rect-
angle to be equal. Appearance of such an ‘‘unphysical’’ bubble in
the simulations is allowed by model B. Model C, on the other hand,
guarantees that disappearing rectangles behave as those for which
conditions of mechanical equilibrium are fulfilled.

2770 54BORIS LEVITAN AND EYTAN DOMANY



larger is the peak. The dependence ofm2
peak on the initial

concentration of defects,c, is shown in Fig. 4: at smallc the
growth of m2

peak seems to be unbounded@25#. At the same
time, the peak obtained in simulations using model B has
only a weak dependence onc, and for smallc the magnitude
of the peak is saturated.

These features follow directly from the behavior of a
single cluster as described by the two models. Model B gives
a finite value of the second momentm2

cl , so its value at the
peak,m2

peak ~corresponding to the state of the froth where all
the initially present hexagons have just been transformed! is
finite as well. In model C,m2

cl grows unbounded; therefore,
if the initial density is small, i.e., the distance between the
neighboring defects is large, at the moment when the clusters
meet each other their second moment is consequently very
large. Hence the value ofm2

peak grows as the density de-
creases unbounded~this idea was expressed by Weaire be-
fore we obtained our results!.

We tested this model also by simulating the properties of

the scaling state: the topological distributions of the bubbles
and the survivors did not deviate considerably from the re-
sults obtained using model B. One could expect this, because
the modification of the rules of model C is important only
when one of the neighbors of a rectangle is much larger than
the other three. In the scaling regime we do not expect this
situation, so the two models are expected to give the same
results. Thus we can hope that finally we have a topological
model that describes well all known real and numerical ex-
periments on soap froth.

IV. SUMMARY

It has been noticed recently that the traditional topological
model~model A!, that uses a random choice for the results of
T2 processes, exhibits discrepancies with experiments. The
disagreement is quite insignificant as long as we measure the
topological distribution of the bubbles in the scaling state,
but the deviation becomes considerable for some features of
the transient behavior@such as the peak ofm2(t)#, for the
survivors’ topological class distribution and for the cluster
grown from a single defect. An attempt to improve the topo-
logical model was made in our previous work@9#, where a
topological model of the soap froth dynamics was suggested
~model B!. This model differs from model A in that T2 re-
arrangements are performed with more care than just at ran-
dom; it turns out that the result of the rearrangement depends
on the neighbors of a vanishing bubble.

The way rectangles vanish according to model B has been
revised now and a new model C was introduced. We noticed
that model B ignored the fact that four-sided bubbles must be
perfect rectangles and therefore pairs of opposite sides van-
ish. We found a way to include this effect in the model
within the framework of the topological approach. In fact,
this small detail would not play a role, unless the four neigh-
bors of the shrinking rectangle were very different in size.
Consequently, model C gives a different result only for the
single cluster growth. For this problem models A and B gave
qualitatively similar results, namely, that the topological dis-
tribution of the cluster approaches a fixed form with the sec-
ond momentsm2

A50.72, m2
B51.1. These results disagree

with two extensive simulations of the problem that use the
Potts model and the model of Weaire and Kermode. Both
simulations yield unbounded growth of the second moment
of the topological distribution. Model C agrees with these
studies, yieldingm2

C(t)→` as well.
Thus we must conclude that answers to various questions

that go beyond the simplest characteristics of the scaling
state are very sensitive to the way T2 processes are per-
formed. We believe that model C introduced in this paper is
in good agreement with the experimental data that are avail-
able today.
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FIG. 3. The second moment of the topological distribution,
m2, vs ‘‘time’’ t5Ni /N (Ni540.000 is the number of bubbles in
initial configuration,N is the current number of bubbles in the
system! as obtained from simulations of model C. Evolution from
two ordered initial conditions, with defect densitiesc50.0125~up-
per curve! andc50.05 ~lower curve!, is presented.

FIG. 4. Peak value of the second moment of the topological
distribution during the transient period,m2

peak as a function of the
initial density of defects,c. Each point is found by averaging over
a large number of runs in order to eliminate fluctuations.
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